Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D11

Direct product G=N×Q with N=C2 and Q=C22×D11
dρLabelID
C23×D1188C2^3xD11176,41


Non-split extensions G=N.Q with N=C2 and Q=C22×D11
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D11) = C2×C4×D11central extension (φ=1)88C2.1(C2^2xD11)176,28
C2.2(C22×D11) = C22×Dic11central extension (φ=1)176C2.2(C2^2xD11)176,35
C2.3(C22×D11) = C2×Dic22central stem extension (φ=1)176C2.3(C2^2xD11)176,27
C2.4(C22×D11) = C2×D44central stem extension (φ=1)88C2.4(C2^2xD11)176,29
C2.5(C22×D11) = D445C2central stem extension (φ=1)882C2.5(C2^2xD11)176,30
C2.6(C22×D11) = D4×D11central stem extension (φ=1)444+C2.6(C2^2xD11)176,31
C2.7(C22×D11) = D42D11central stem extension (φ=1)884-C2.7(C2^2xD11)176,32
C2.8(C22×D11) = Q8×D11central stem extension (φ=1)884-C2.8(C2^2xD11)176,33
C2.9(C22×D11) = D44⋊C2central stem extension (φ=1)884+C2.9(C2^2xD11)176,34
C2.10(C22×D11) = C2×C11⋊D4central stem extension (φ=1)88C2.10(C2^2xD11)176,36

׿
×
𝔽